Interpolation at Time Function
get(connection, parameters_dict)
An RTDIP interpolation at time function which works out the linear interpolation at a specific time based on the points before and after.
This function requires the user to input a dictionary of parameters. (See Attributes table below.)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
connection |
object
|
Connection chosen by the user (Databricks SQL Connect, PYODBC SQL Connect, TURBODBC SQL Connect) |
required |
parameters_dict |
dict
|
A dictionary of parameters (see Attributes table below) |
required |
Attributes:
| Name | Type | Description |
|---|---|---|
business_unit |
str
|
Business unit of the data |
region |
str
|
Region |
asset |
str
|
Asset |
data_security_level |
str
|
Level of data security |
data_type |
str
|
Type of the data (float, integer, double, string) |
tag_names |
str
|
Name of the tag |
timestamps |
list
|
List of timestamp or timestamps in the format YYY-MM-DDTHH:MM:SS or YYY-MM-DDTHH:MM:SS+zz:zz where %z is the timezone. (Example +00:00 is the UTC timezone) |
window_length |
int
|
Add longer window time in days for the start or end of specified date to cater for edge cases. |
include_bad_data |
bool
|
Include "Bad" data points with True or remove "Bad" data points with False |
pivot |
bool
|
Pivot the data on timestamp column with True or do not pivot the data with False |
display_uom |
optional bool
|
Display the unit of measure with True or False. Does not apply to pivoted tables. Defaults to False |
limit |
optional int
|
The number of rows to be returned |
offset |
optional int
|
The number of rows to skip before returning rows |
case_insensitivity_tag_search |
optional bool
|
Search for tags using case insensitivity with True or case sensitivity with False |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame |
DataFrame
|
A interpolated at time dataframe. |
Warning
Setting case_insensitivity_tag_search to True will result in a longer query time.
Note
display_uom True will not work in conjunction with pivot set to True.
Source code in src/sdk/python/rtdip_sdk/queries/time_series/interpolation_at_time.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
Example
from rtdip_sdk.authentication.azure import DefaultAuth
from rtdip_sdk.connectors import DatabricksSQLConnection
from rtdip_sdk.queries import TimeSeriesQueryBuilder
auth = DefaultAuth().authenticate()
token = auth.get_token("2ff814a6-3304-4ab8-85cb-cd0e6f879c1d/.default").token
connection = DatabricksSQLConnection("{server_hostname}", "{http_path}", token)
data = (
TimeSeriesQueryBuilder()
.connect(connection)
.source("{tablename_or_path}")
.interpolation_at_time(
tagname_filter=["{tag_name_1}", "{tag_name_2}"],
timestamp_filter=["2023-01-01T09:30:00", "2023-01-02T12:00:00"],
)
)
print(data)
This example is using DefaultAuth() and DatabricksSQLConnection() to authenticate and connect. You can find other ways to authenticate here. The alternative built in connection methods are either by PYODBCSQLConnection(), TURBODBCSQLConnection() or SparkConnection().
Note
See Samples Repository for full list of examples.
Note
server_hostname and http_path can be found on the SQL Warehouses Page.