Normalization MinMax
NormalizationMinMax
Bases: NormalizationBaseClass
Implements Min-Max normalization for specified columns in a PySpark DataFrame.
Example
from rtdip_sdk.pipelines.data_quality.data_manipulation.spark.normalization.normalization_minmax import NormalizationMinMax
from pyspark.sql import SparkSession
from pyspark.sql.dataframe import DataFrame
normalization = NormalizationMinMax(df, column_names=["value_column_1", "value_column_2"], in_place=False)
normalized_df = normalization.filter_data()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
PySpark DataFrame to be normalized. |
required |
column_names |
List[str]
|
List of columns in the DataFrame to be normalized. |
required |
in_place |
bool
|
If true, then result of normalization is stored in the same column. |
False
|
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/normalization/normalization_minmax.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|